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This paper, as a complement to the work of Montroll and Bendler, is concerned 
with the L6vy-stable distributions and their connection to the dielectric response 
of dipolar materials in the frequency domain. The necessary and sufficient con- 
dition for this connection is found. The presented probabilistic analysis is based 
on the mathematically correct representation of the meaning of the relaxation 
function of a system of dipoles and shows why the same form of a distribution 
of relaxation rates, namely, the completely asymmetric L6vy-stable distribution, 
should apply in all different relaxing systems. This is in contrast to the tradi- 
tional definition of the relaxation function, expressed as a weighted average of 
exponential relaxation functions, which does not explain the universality of the 
dielectric relaxation law. It also follows from the present considerations that not 
only is the imaginary part Z'(co) of the dielectric susceptibility directly related 
to the L6vy-stable distribution (as was found by Montroll and Bendler), but so 
is the real part Z'(~o). As a consequence the relation Z'(co)/Z'(co)= cot(n~/2) for 
co > Op and 0 < n < 1, implied by experimental results, is obtained. 

KEY WORDS:  Dipolar materials; dielectric susceptibility; asymmetric 
L6vy-stable distributions; Williams-Watts dielectric response. 

1. I N T R O D U C T I O N  

From studies carried out in recent years on the dielectric relaxation 
phenomena in complex dipolar systems, it has become clear that the func- 
tions which describe their dynamical behavior considerably deviate from 
the predictions of the Debye exponential relaxation law. (2'3) It was found 
that the regression of polarization fluctuations to equilibrium proceeds 
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faster than exponentially at times shorter than the relaxation time rp and 
slower than exponentially at times greater than rp. Over the last decade the 
physical basis for this specific deviation from the exponential ideality has 
been the subject of a great deal of interest and a large number of theoretical 
models involving different physical mechanisms have been proposed. (4-17) 
Despite differences in physical details, all the proposed models derive the 
experimental results for the short-time limit and most of them agree in 
ascribing the behavior in this range to the progressive involvement of a 
hierarchy of self-similar dynamic processes. ~12'15) At times greater than ~p 
agreement either between the models or with the experiment is no longer 
maintained. 

The earliest attempts to reconcile the observed non-Debye relaxation 
were based on the concept of a system of independent exponentially relax- 
ing species with a statistical distribution of relaxation times (or rates). The 
most serious objection to the acceptance of this way to obtain a different 
result than that of the conventional Debye relaxation (characterized by a 
single relevant relaxation time ~D) lies in the observed universality of the 
dielectric response, since this would require a proof of why the same form 
of a distribution of relaxation times should apply in all different systems. 
This problem has been solved recently. (18 2o) It has been shown that the 
traditional approach based on the concept of a system of independent 
exponentially relaxing dipoles with different (independent) relaxation rates 
uniquely leads to the relaxation function of the Williams-Watts form only. 
It follows from the probabilistic analysis that the Williams-Watts function 
has to be interpreted as the Laplace transform of the completely asym- 
metric L6vy-stable distribution of relaxation rates. The only necessary and 
sufficient condition for this relationship is the self-similar behavior of the 
nonnegative relaxation rates. 

The purpose of the present paper is to discuss the consequences of the 
traditional approach in the frequency domain. As we shall see below, both 
the real and imaginary parts of the complex susceptibility X(co) are directly 
related to the L6vy-stable distribution of relaxation rates. Due to this 
relationship the experimentally observed frequency-independent rule, the 
so-called "energy criterion, ''(21) is straightforwardly fulfilled. 

2. DIELECTRIC SUSCEPTIBILITY.  
EXPERIMENTAL EVIDENCES 

The frequency dependence of the dielectric susceptibility from orienta- 
tional polarization of permanent dipoles has been the subject of experi- 
mental and theoretical investigations for many years and still there is no 
generally accepted theory capable of explaining satisfactorily the totality 
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of the observed results. Experimentally it was found that the complex 
dielectric susceptibility X(co)=X'(co)-iz"(co) of most dipolar materials 
exhibited a peak in the loss component )/"(co) at a characteristic frequency 
cop, but showed markedly different high- (co>COp) and low-frequency 
(co < COp) dependences than those predicted by the Debye model. Thus it 
was noted (21) that 

)/'(co)oc)~"(co)occo" 1 for co>cop, 0 < n < l  (1) 

in contrast to the Debye (exponential relaxation) result 

)/'(CO) OC co-2 and )~"(co) OC 60-1 for co>cop 

It has been pointed out (2n that the experimental result of Eq. (1) implies 
that 

)('(co)= cot (n  for co>cop (2) 

The experimental result (s) 

Z'(0) - Z'(co) oc Z"(co) oc corn for co < COp, 0 < m < 1 (3) 

was also significantly different from that predicted by Debye, namely 

g ' ( 0 ) -  )/'(co) oc co2 and )/"(co) oc co for co < cop 

The experimental behavior of (3) leads to a similar frequency-independent 
rule (22) as that of (2): 

)/'(0) - )/'(co) = tan m for co < cop (4) 

The relations (2) and (4) underline the differences in the nature of the high- 
and low-frequency polarization processes. Equation (2) shows that when a 
system is driven by an AC field the energy recoverable per cycle remains 
a constant fraction of the work done by the field independent of frequency 
in the frequency range co < cop. When a system is driven by an AC field in 
the frequency range co <cop, then it follows from Eq. (4) that the energy 
lost per cycle has a constant relationship to the extra energy that can be 
stored by a static field. However, it does not seem to have been realized 
that this must be the rule that defines the nature of the relaxation 
processes. 

As yet no microscopic model has been based directly on the experi- 
mental rules, Eqs. (2) and (4), instead most of them have concentrated on 
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the derivation of empirical functions which have been inputted to fit the 
experimental data for Z(co) [or  for the dielectric response function f ( t )  in 
the time domain].  The exception is the cluster model, (5'15) which derived 
entirely new expressions from a consideration of the way in which the 
energy contained in a fluctuation is distributed over a system of interacting 
clusters. Although the result is in agreement with the empirical laws, 
(1) and (3), this model does not convince us of its general applicability. 

It is always possible to reproduce the experimental results by means of 
a choice of a suitable relaxation function ~b(t), since 

fo Z(co) = e- i~ f ( t )  dt (5) 

where f ( t ) = - d ( ~ ( t ) / d t ,  but such an approach does not explain the 
universality of the empirical laws. It has been suggested (6-13) that the 
Williams-Watts relaxation function 

(~(t)=exp[--(copt)~], 0 < ~ < 1 ,  ~ = l - - n  (6) 

can mimic a wide variety of behavior because of the slow change in the 
frequency dependence of its Fourier transform in the region of ~o < COp. On 
the basis of experimental observations it has been argued ~15) that this 
agreement is more apparent than real, and when the frequency range is 
large enough the value of n determined for co > cop is insufficient to define 
the whole relaxation process. Similarly, measurements of a response func- 
tion f ( t )  made in the time domain are often not extended far enough 
beyond cop1 to distinguish between the Williams-Watts function and other 
alternative expressions. It has also been concluded that, in general, the 
observed behavior is that of (1) and (3) with exponents m r 1 - n .  When 
the complete frequency dependence can be measured at a constant tem- 
perature, the deduced values of n and m are normally found not to change 
for the portions of the same response obtained at different temperatures. (5) 
Even when this wide range of measurement is not possible the deduced 
value of m is usually observed to remain constant over a given temperature 
range, except for cryogenic temperatures. Therefore, suggestions that devia- 
tions at low frequency (co < cop) are due to a temperature-dependent change 
in n cannot be accepted and the empirical result can be taken as a true 
description of the situation. 

3. D I E L E C T R I C  S U S C E P T I B I L I T Y .  
P R O B A B I L I S T I C  R E P R E S E N T A T I O N  

The traditional explanation for non-Debye relaxation has been to 
assign a local value to the relaxation time v for each dipole, and hence 
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recover the observed regression of polarization fluctuations by means of 
the relaxation function, expressed as a weighted average of exponential 
relaxation functions (1'23) 

(b(t)= fo W(~) exp ( -  ~) d~ (7) 

This attempt has the advantage of retaining the stochastic features of 
Debye's original concept of independently exponentially relaxing dipoles in 
a viscous medium that acts as a random noise source. Although, the choice 
of distribution w(v) is not arbitrary, but defined by the empirical relaxation 
functions, such an approach does not explain the universality of dielec- 
tric responses. Namely, it can only be concluded that a given empirically 
observed relaxation taw is compatible with a particular distribution of 
relaxation times (or rates), but it does not explain why the power law 
should be so universally applicable. 

Below we present a probabilistic analysis of the idea of the distribution 
of relaxation times. This idea, while very natural on physical grounds, 
based on the definition (7) used for 80 years, does not explain the univer- 
sality of dielectric responses. The present analysis is based on the mathe- 
matically correct representation of the meaning of the relaxation function 
of a system of dipoles. ~ls) In contrast, the traditional definition (7) does 
not, in general, represent the relaxation function of a system. Our ultimate 
aim is (1)to prove that the same form of distribution of relaxation rates 
will apply in all different systems, and also (2)to show the uniqueness of 
the form of dielectric susceptibility expressed by Eq. (5). 

In the traditional approach the exponential relaxation of an individual 
dipole is conditioned only by the value taken by its relaxation rate/~1s-20) 
(/~ = l/v). So, if the relaxation rate of the ith dipole has taken the value b, 
then the probability that this dipole has not changed its initial aligned 
position up to the moment t is 

Pr(Oi>~t]~i=b)=exp(-bt) for t>~0, b > 0  (8) 

The random variable ~i denotes the relaxation rate of the ith dipole and 
the variable 0i, the time needed for changing its initial orientation;/~,/~2,.-- 
and 01, 02 .... form sequences of nonnegative, independent, identically 
distributed random variables with distribution functions F~ and F o, 
respectively. 

It follows from Eq. (8) that the total probability that the ith dipole has 
not changed its initial aligned position up to the moment t equals (19) 

f? Pr(O~> t) = exp(-bt)  dF~(b) (9) 
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The right-hand side of Eq. (9) is a weighted average of exponential relaxa- 
tions with respect to the distribution F/~ of relaxation rates [similarly to 
the traditional Eq. (7)] and is just the Laplace transform 2,e(Fr t) of the 
distribution function Fa. The left-hand side of Eq. (9) has the meaning 
of the relaxation function ~bi(t) of an individual dipole taken from the 
set of independent exponentially relaxing dipoles with different relaxation 
rates/~i. Therefore 

~b,(t) = ~ (Fe ;  t) (10) 

In a system consisting o f  a large number N o f  relaxing dipoles, the 
relaxation function (~(t) has to express the probability that the whole system 
has not changed its initial state until the time t. So (Is) 

~b(t) = lim Pr(A N min(0t . . . . .  ON) >>. t) (11) 

where A N is a suitable normalizing constant. 
According to Eq. (5), the complex susceptibility can be expressed by 

means of the relaxation function ~b(t) as follows: 

Z(co)= e -'~t -- (t) dt 

Therefore, using Eq. (11), we have 

Z(~o)= lim . . .  e i~Aumin(t~'""'u) d F o ( t l ) " ' d F o ( t u )  (12) 
N ~ o o  

The above integral, by means of the Fubini theorem, (24) the property 
of the conditional probability, (25) and Eq. (8), can be expressed as 

"'" f o e  icoANmin(tl,..., tN) d F o ( t l ) " "  dFo(tN) 

= f o d f ~ ( b l ) " ' f o d F p ( b N ) f o ' " f o  e-ic~ 

N 
x 1-[ bk e - b ~  dtl ""  dtu 

k = l  

j = l  

(13) 
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where 

I jN(b 1 ,..., b N ) =  dtj . . .  e -i~ 
tj 

N 

• l-[ bke b~tkdt l . . .d t j  1 d t j + l . . . d t u  
k = l  

After integrating with respect to the variables tk, k :~j, we obtain that the 
integral IjN equals 

l j u ( b l  ..... bN ) = _ e_io, A~,: d (e_b:,j) [ I  e -be'j dtj 
dt y k =  l , k  ~ j 

and hence 

] ju (b l  ..... b N ) =  -- e ~ e -bk~ ds (14) 
j = l  1 

Now, integrating by parts the integral in Eq. (14) and substituting t = ANs, 
we get 

l jN(b 1 b u )  = 1 - -  ico I_ e-i~" e bkt/AN dt ( 1 5 )  
j = l  = 1  

From Eqs. (13) and (15), the susceptibility function g(co) defined by 
Eq. (12) equals 

g(co)= lira 1- ico e io, t 5r F,;  dt (16) 
N ~ o o  

and after integrating by parts, Eq. (16) obtains the form 

co t u 
(17) 

The limit in Eq. (17) exists if and only if [-~<a(F~; t / A N ) ]  N tends to some 
limit. Moreover, it follows from the theory of the L6vy-stable laws (z6) that 
the only possible nondegenerate form of the limit of [-s t / A N ) ]  N is the 
Laplace transform of the completely asymmetric L6vy-stable distribution 
function F supported on the nonnegative half-line, with an index of 
stability ~, 0 < ~ <  1, and A N = N  1/~, i.e., 

[( lira 5 a F•; =L,a(F; t) (18) 
N ~ o o  



76 Jurlewicz and Weron 

Consequently, from Eq. (17), 

fo ~ d )~(~o)=- e ~ o ' ~ S F ( F ; t )  dt (19) 

or, from Eq. (16), 

Z(oo) = 1 - io) e-g~163 t) dt (20) 

Equation (20) shows the explicit relationship between the L6vy-stable 
distributions and the dielectric response in the frequency domain. 

It has been shown (2~ that the limiting Laplace transform in Eq. (18) 
is just the relaxation function ~b(t) given by Eq. (11) and therefore 

~(t )  = f ?  w, ,(b ) exp ( -  bt) db (21) 

where Wst(b ) denotes the completely asymmetric L6vy-stable probability 
density function. Comparing the result (21) with Eqs. (9) and (10), we get 
the representation of a system consisting of a large number of relaxing 
dipoles by one "averaged dipole" with the completely asymmetric L6vy- 
stable distribution of its relaxation rate. Concluding, a system of N ~  oe 
independent exponentially relaxing dipoles with different relaxation rates/?i 
can be represented by the averaged dipole with relaxation rate (18) ~ =  
limN ~ co ~2 N i= 1 ill~AN the distribution of which is a completely asymmetric 
L6vy-stable one. Hence, only in this case does the relaxation function of a 
whole system satisfy Eq. (7), but with w(r)= b2ws,(b), b = 1/~. 

It is worth to note that it is not necessary to know the detailed nature 
of F/~ to obtain the limiting form (18). In fact, this is determined only by 
the behavior of the tail of F~(b) for large b, and so a good deal may be said 
about the asymptotic properties based on rather limited knowledge of 
the properties of F~. It can be shown (2~ that the necessary and sufficient 
condition for the distribution function F a ( b ) =  1 -  Pr(/~i> b) to have the 
limit in Eq. (18) can be expressed by the following scaling law: 

for any x > 0 Pr(/~i > xb)  -- x ~ Pr(/~i > b) for large b (22) 

It has been suggested (15'19'2~ that self-similarity (fractal behavior) is a 
fundamental feature of relaxation in real materials. This result, obtained 
here by means of purely probabilistic techniques independent of physical 
details, is in agreement with models ~12) identifying this region of fractal 
behavior. 
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4. FREQUENCY D O M A I N  W I L L I A M S - W A T T S  RESPONSE 

From the probability theory {26) the limiting Laplace transform in 
Eq. (18) has the following form: 

5r t) = exp[--  (At) ~] (23) 

and so the dielectric response, Eq. (19), in the frequency domain equals 

X(co) = I f  e_i~, ( d _{At)s) -- d t e  dt (24) 

where 0 < ~ < 1 and A is a positive constant. Hence, the complex suscep- 
tibility in Eq. (20) corresponds to the Williams-Watts form (6) of the 
relaxation function. It is also possible to obtain the Debye response taking 

~ 1. However, from the mathematical point of view this is fulfilled in the 
case of a degenerate limiting distribution function F, i.e., in the case when 
the random relaxation rate/~ of the averaged dipole representing a relaxing 
system can take only one value. 

Equations (20) and (23) give us 

•'(co) = 1 - co f o  L,W(F; t) sin(cot) dt = 1 - 6o f o  e - (A ' )~s in(co t )d t  (25) 

and 

Z"(CO) = co 5r t) cos(cot) dt = co e (A,)~ COS(COt) dt (26) 

So, it has been proved that not only is the imaginary part )('(co) of the 
dielectric susceptibility directly related to the L6vy-stable laws (as was 
found by Montroll and Bendler(1)), but so is the real part )((co). The 
difference in the result obtained here and in the mentioned paper is a 
consequence of the following fact: The Fourier transform of the symmetric 
L6vy-stable distribution (for which the positive parameter e can be less or 
equal to 2) and the Laplace transform of the completely asymmetric L6vy- 
stable law (for which c~ has to be less than 1) are of the same form, 
exp[--(At)~], for t~>0. Therefore, for 0 < e < 1 in the theory of the L6vy- 
stable distributions any function of such a form can be interpreted in two 
different ways. If the function e x p [ - ( A t )  ~] is taken as the Fourier trans- 
form (as in Montroll and Bendler(1)), then it is connected with a random 
variable which takes both positive and negative values in the range 
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( - ~ ,  or). But if this function is the Laplace transform, then the random 
variable connected with it is nonnegative. 

The most natural way to describe the relaxing dipolar systems is to 
assume the randomness of, obviously, nonnegative relaxation times. Hence, 
from the physical point of view the proper case is the second one, i.e., when 
the connection between the L6vy-stable distribution and the dielectric 
susceptibility is given by the Laplace transform, Eqs. (25) and (26). 

Now, let us examine the high- and low-frequency behavior of the 
dielectric susceptibility given by Eq. (24). As we will see below, g(co) is 
proportional to o ~ for large co and, consequently, Z"(co)/Z'(co) tends to a 
positive constant as o ~ ~ .  In contrast, for co ~ 0, Z"(co) / [g ' (0)-  Z'(co)] 
tends to infinity and [Z(0) -Z(co) ]  cannot have any "power-law" property 
for small co. 

Substituting s = cot in Eq. (24), we get 

Z(~ ~ = ~A I /  ( A s ) ~ -  1 e-ise-(As/o))~ Ks 

Since e x p [ - ( A t / c o ) ~ ] ,  as a function of co, monotonically increases to 1 as 
co ~ ~ ,  we obtain 

l i r a  X(CO)_ ~A ~ I ~ t ~ le- i t  at (27) 
: o  

From the theory of complex functions we have (27) 

fi t ~ l e - i '  dt = (i)-~ F(~) = [cos(~n/2) - i sin(~n/2)] F(~) 

where 

S F(~ )=  t ~ le t dt 

From Eqs. (27) and (28) it follows that 

(28) 

,am tan(  ) cot(n ) 
~ ~ z'(co) 

where n =  1 - c  t, which is in agreement with the experimental results 
[~Eq. (2)]. 
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and 

For small co it is easy to see that 

lim if(o)) 
c o c O  (D 

Therefore, we have 

A 

lira Z'(0)-Z'(m) F(1 +2/a) 
~o~0 co 2 2A 2 

Z " ( c o )  
lim - 

o~ ~ o z ' ( o )  - z ' ( ~ )  

which is contrary to the experimental results FEq. (4)]. 
In this paper we have discussed the mathematical foundation of the 

generalized concept of the distribution of relaxation times (rates) intro- 
duced in the time domain analysis of dielectric relaxations (18-2~ and its 
consequences in the frequency domain. Here we have restricted our con- 
siderations to a system of independent exponentially relaxing dipoles with 
different relaxation rates fl; determined by local environments. We have 
based our analysis on a new definition of the relaxation function (18) ~b(t), 
Eq. (11), which provides the mathematically correct representation of the 
meaning of the relaxation function of a system. By contrast, the definition 
(7), used since Wagner (1913) c23) in terms of the distribution of relaxation 
times w(t), which has served to determine this distribution from the 
empirical function ~b(t), does not, in general, represent the relaxation 
function of a system. 

Equation (7) is equivalent to (11) only in the case discussed in this 
paper and then, if and only if the scaling law (22) is fulfilled does the 
relaxation function take the only possible form (6). The scaling law (22) 
determines the behavior of the tail of the unknown distribution function Fa 
of relaxation rates and guarantees the existence of the nondegenerate limit- 
ing distribution F and hence the existence of the macroscopic relaxation 
function (l 1 ). 

So, we have shown that the generalized concept of the distribution of 
relaxation times (rates) in the case of a system of independent exponen- 
tially relaxing dipoles with different (independent) relaxation rates fli 
uniquely leads to the relaxation function of the Williams-Watts form (6). It 
follows from the probabilistic analysis that the Williams-Watts function 
has to be interpreted as the Laplace transform of the complete asymmetric 
L6vy-stable distribution ~2s) and thus the parameter ~ has to be in the range 
(0, 1). The only necessary and sufficient condition for this relationship is 
the self-similar behavior of the nonnegative relaxation rates [Eq. (22)]. 

822/73/I-2-6 
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Several theories based on different physical mechanisms have been 
also successful in deriving the stretched exponential decay law (6). Three of 
these theories, the direct-transfer model, ~4) the hierarchically constrained 
dynamics model, ~6) and the defect-diffusion model, (7) have been shown (12) 
to have an underlying common mathematical structure. The existence of 
scale-invariant relaxation rates generated in each model was found to be 
the unifying feature of the theories and the sufficient condition to obtain 
the nonexponential relaxation function. 

Here we have demonstrated that the mathematical framework leading 
in a natural way to a stretched exponential relaxation function is based on 
the representation of a relaxing dipolar system by independent exponential 
relaxations, which seems to be hidden in the models (4'7) mentioned above. 
In this case the system can be represented by one "averaged dipole" (as was 
the starting point in the defect-diffusion model ~7)) and the necessary and 
sufficient condition for this is the existence of the scale-invariant relaxation 
rates, Eq. (22). Moreover, we have found that the distribution of the 
relaxation rate of the averaged dipole is the completely asymmetric Lbvy- 
stable one and hence is scale invariant. 

In the case discussed in this paper it has also been proved that both 
the real and imaginary parts of the complex susceptibility Z(co) are directly 
related to the L6vy-stable distributions [Eqs. (25) and (26)]. As a conse- 
quence, only the experimentally observed high-frequency result [Eq. (2)] is 
fulfilled. 

The main reason the relaxation function (11) cannot have any other 
than the stretched exponential form (6) is that the random variable 0i is 
finite with probability 1. In order to obtain a broader class of dielectric 
responses one should define a random variable 0i infinite with some 
nonzero probability. (18-2~ Such a modification expresses the well-known 
fact that the individual dipoles and their environments do not remain 
independent during the process of relaxation tS) and leads directly to a 
class of double power laws, which includes the Williams-Watts and the 
Debye responses as special cases. (2~ It leads also to both the frequency- 
independent rules, Eqs. (2) and (4), experimentally observed for the 
dielectric response in the frequency domain. 
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